Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38658737

RESUMO

Trace amine-associated receptor 1 (TAAR1) is an intracellular expressed G-protein-coupled receptor that is widely expressed in major dopaminergic areas and plays a crucial role in modulation of central dopaminergic neurotransmission and function. Pharmacological studies have clarified the roles of dopamine D1 receptor (D1R) in the medial prefrontal cortex (mPFC) in cognitive function and social behaviors, and chronic stress can inhibit D1R expression due to its susceptibility. Recently, we identified TAAR1 in the mPFC as a potential target for treating chronic stress-induced cognitive and social dysfunction, but whether D1R is involved in mediating the effects of TAAR1 agonist remains unclear. Combined genomics and transcriptomic studies revealed downregulation of D1R in the mPFC of TAAR1-/- mice. Molecular dynamics simulation showed that hydrogen bond, salt bridge, and Pi-Pi stacking interactions were formed between TAAR1 and D1R indicating a stable TAAR1-D1R complex structure. Using pharmacological interventions, we found that D1R antagonist disrupted therapeutic effect of TAAR1 partial agonist RO5263397 on stress-related cognitive and social dysfunction. Knockout TAAR1 in D1-type dopamine receptor-expressing neurons reproduced adverse effects of chronic stress, and TAAR1 conditional knockout in the mPFC led to similar deficits, along with downregulation of D1R expression, all of these effects were ameliorated by viral overexpression of D1R in the mPFC, suggesting the functional interaction between TAAR1 and D1R. Collectively, our data elucidate the possible molecular mechanism that D1R in the mPFC mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits.

2.
Sheng Li Xue Bao ; 76(1): 89-96, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38444134

RESUMO

Trace amine-associated receptor 1 (TAAR1) is a classical type of G-protein-coupled receptor, which is widely distributed in the brain of mammals, especially in the limbic system and the region rich in monoaminergic neurons, and it is a highly conserved TAAR subtype in all species. TAAR1 can specifically respond to endogenous trace amines in the central nervous system and peripheral tissues, and plays an important role in the pathophysiological mechanisms involving the dysregulation of monoamine system and glutamate system leading to mental disorders. In addition, TAAR1 modulator can act on inwardly rectifying potassium channels and regulate synaptic transmission and neuronal activity. According to the latest research findings, TAAR1 exerts a series of functions by regulating signal pathways and substrate phosphorylation, which is related to emotion, cognition, fear and addiction. Therefore, we conducted a detailed review of relevant studies on the TAAR1 signaling pathways, aiming at revealing the great potential of TAAR1 as a new target for drug treatment of neuropsychiatric disorders.


Assuntos
Receptores Acoplados a Proteínas G , Transmissão Sináptica , Animais , Humanos , Encéfalo , Aminas , Mamíferos
3.
Transl Psychiatry ; 14(1): 136, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443354

RESUMO

Major depressive disorder (MDD) is associated with functional disturbances in subcortical regions. In this naturalistic prospective study (NCT03294525), we aimed to investigate relationships among subcortical functional connectivity (FC), mood symptom profiles and treatment outcome in MDD using multivariate methods. Medication-free participants with MDD (n = 135) underwent a functional magnetic resonance imaging scan at baseline and completed posttreatment clinical assessment after 8 weeks of antidepressant monotherapy. We used partial least squares (PLS) correlation analysis to explore the association between subcortical FC and mood symptom profiles. FC score, reflecting the weighted representation of each individual in this association, was computed. Replication analysis was undertaken in an independent sample (n = 74). We also investigated the relationship between FC score and treatment outcome in the main sample. A distinctive subcortical connectivity pattern was found to be associated with negative affect. In general, higher FC between the caudate, putamen and thalamus was associated with greater negative affect. This association was partly replicated in the independent sample (similarity between the two samples: r = 0.66 for subcortical connectivity, r = 0.75 for mood symptom profile). Lower FC score predicted both remission and response to treatment after 8 weeks of antidepressant monotherapy. The emphasis here on the role of dorsal striatum and thalamus consolidates prior work of subcortical connectivity in MDD. The findings provide insight into the pathogenesis of MDD, linking subcortical FC with negative affect. However, while the FC score significantly predicted treatment outcome, the low odds ratio suggests that finding predictive biomarkers for depression remains an aspiration.


Assuntos
Transtorno Depressivo Maior , Humanos , Afeto , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Estudos Prospectivos , Resultado do Tratamento
4.
Artigo em Inglês | MEDLINE | ID: mdl-38504012

RESUMO

Witnessing violent or traumatic events is common during childhood and adolescence and could cause detrimental effects such as increased risks of psychiatric disorders. This stressor could be modeled in adolescent laboratory animals using the chronic witnessing social defeat (CWSD) paradigm, but the behavioral consequences of CWSD in adolescent animals remain to be validated for cognitive, anxiety-like, and depression-like behaviors and, more importantly, the underlying neural mechanisms remain to be uncovered. In this study, we first established the CWSD model in adolescent male mice and found that CWSD impaired cognitive function and increased anxiety levels and that these behavioral deficits persisted into adulthood. Based on the dorsal-ventral functional division in hippocampus, we employed immediate early gene c-fos immunostaining after behavioral tasks and found that CWSD-induced cognition deficits were associated with dorsal CA3 overactivation and anxiety-like behaviors were associated with ventral CA3 activity reduction. Indeed, chemogenetic activation and inhibition of dorsal CA3 neurons mimicked and reversed CWSD-induced recognition memory deficits (not anxiety-like behaviors), respectively, whereas both inhibition and activation of ventral CA3 neurons increased anxiety-like behaviors in adolescent mice. Finally, chronic administration of vortioxetine (a novel multimodal antidepressant) successfully restored the overactivation of dorsal CA3 neurons and the cognitive deficits in CWSD mice. Together, our findings suggest that dorsal CA3 overactivation mediates CWSD-induced recognition memory deficits in adolescent male mice, shedding light on the pathophysiology of adolescent CWSD-induced adverse effects and providing preclinical evidence for early treatment of stress-induced cognitive deficits.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38514038

RESUMO

Multiple lines of evidence suggest that the trace amine-associated receptor 1 (TAAR1) holds promise as a potential target for stress-related disorders, such as treating major depressive disorder (MDD). The role of TAAR1 in the regulation of adult neurogenesis is recently supported by transcriptomic data. However, it remains unknown whether TAAR1 in dentate gyrus (DG) mediate chronic stress-induced negative effects on hippocampal plasticity and related behavior in mice. The present study consisted of a series of experiments using RNAscope, genetic approaches, behavioral tests, immunohistochemical staining, Golgi-Cox technique to unravel the effects of TAAR1 on alterations of dentate neuronal plasticity and cognitive function in the chronic social defeat stress model. The mice subjected to chronic defeat stress exhibited a noteworthy decrease in the mRNA level of TAAR1 in DG. Additionally, they exhibited compromised social memory and spatial object recognition memory, as well as impaired proliferation and maturation of adult-born dentate granule cells. Moreover, the selective knockout TAAR1 in DG mostly mimicked the cognitive function deficits and neurogenesis impairment induced by chronic stress. Importantly, the administration of the selective TAAR1 partial agonist RO5263397 during stress exposure attenuated the adverse effects of chronic stress on cognitive function, adult neurogenesis, dendritic arborization, and the synapse number of dentate neurons in DG. In summary, our findings suggest that TAAR1 plays a crucial role in mediating the detrimental effects of chronic stress on hippocampal plasticity and cognition. TAAR1 agonists exhibit therapeutic potential for individuals suffering from cognitive impairments associated with MDD.


Assuntos
Giro Denteado , Transtorno Depressivo Maior , Receptores Acoplados a Proteínas G , Animais , Camundongos , Giro Denteado/fisiologia , Hipocampo/fisiologia , Cognição/fisiologia , Plasticidade Neuronal/fisiologia , Neurogênese
6.
Pharmacol Biochem Behav ; 237: 173722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336220

RESUMO

The sex difference that females are more vulnerable to depression than males has been recently replicated in an animal model of early-life stress (ES) called the limited bedding and nesting material (LBN) paradigm. Adopting this animal model, we have previously examined the effects of ES on monoamine transporter (MATs) expression in stress-related regions in adult female mice, and the reversal effects of a novel multimodal antidepressant, vortioxetine. In this study, replacing vortioxetine with a classical antidepressant, fluoxetine, we aimed to replicate the ES effects in adult female mice and to elucidate the commonality and differences between fluoxetine and vortioxetine. We found that systemic 30-day treatment with fluoxetine successfully reversed ES-induced depression-like behaviors (especially sucrose preference) in adult female mice. At the molecular level, we largely replicated the ES effects, such as reduced serotonin transporter (SERT) expression in the amygdala and increased norepinephrine transporter (NET) expression in the medial prefrontal cortex (mPFC) and hippocampus. Similar reversal effects of fluoxetine and vortioxetine were observed, including SERT in the amygdala and NET in the mPFC, whereas different reversal effects were observed for NET in the hippocampus and vesicular monoamine transporters expression in the nucleus accumbens. Overall, these results demonstrate the validity of the LBN paradigm to induce depression-like behaviors in female mice, highlight the involvement of region-specific MATs in ES-induced depression-like behaviors, and provide insights for further investigation of neurobiological mechanisms, treatment, and prevention associated with depression in women.


Assuntos
Experiências Adversas da Infância , Fluoxetina , Humanos , Feminino , Camundongos , Masculino , Animais , Fluoxetina/farmacologia , Vortioxetina , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico
7.
Psychol Med ; 54(4): 763-774, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084586

RESUMO

BACKGROUND: Exploring the neural basis related to different mood states is a critical issue for understanding the pathophysiology underlying mood switching in bipolar disorder (BD), but research has been scarce and inconsistent. METHODS: Resting-state functional magnetic resonance imaging data were acquired from 162 patients with BD: 33 (hypo)manic, 64 euthymic, and 65 depressive, and 80 healthy controls (HCs). The differences of large-scale brain network functional connectivity (FC) between the four groups were compared and correlated with clinical characteristics. To validate the generalizability of our findings, we recruited a small longitudinal independent sample of BD patients (n = 11). In addition, we examined topological nodal properties across four groups as exploratory analysis. RESULTS: A specific strengthened pattern of network FC, predominantly involving the default mode network (DMN), was observed in (hypo)manic patients when compared with HCs and bipolar patients in other mood states. Longitudinal observation revealed an increase in several network FCs in patients during (hypo)manic episode. Both samples evidenced an increase in the FC between the DMN and ventral attention network, and between the DMN and limbic network (LN) related to (hypo)mania. The altered network connections were correlated with mania severity and positive affect. Bipolar depressive patients exhibited decreased FC within the LN compared with HCs. The exploratory analysis also revealed an increase in degree in (hypo)manic patients. CONCLUSIONS: Our findings identify a distributed pattern of large-scale network disturbances in the unique context of (hypo)mania and thus provide new evidence for our understanding of the neural mechanism of BD.


Assuntos
Transtorno Bipolar , Humanos , Mania , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo
8.
BMC Psychiatry ; 23(1): 584, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568112

RESUMO

BACKGROUND: The neural correlate of cognitive deficits in bipolar disorder (BD) is an issue that warrants further investigation. However, relatively few studies have examined the intrinsic functional connectivity (FC) underlying cognitive deficits involving sustained attention and executive function at both the region and network levels, as well as the different relationships between connectivity patterns and cognitive performance, in BD patients and healthy controls (HCs). METHODS: Patients with BD (n = 59) and HCs (n = 52) underwent structural and resting-state functional magnetic resonance imaging and completed the Wisconsin Card Sorting Test (WCST), the continuous performance test and a clinical assessment. A seed-based approach was used to evaluate the intrinsic FC alterations in three core neurocognitive networks (the default mode network [DMN], the central executive network [CEN] and the salience network [SN]). Finally, we examined the relationship between FC and cognitive performance by using linear regression analyses. RESULTS: Decreased FC was observed within the DMN, in the DMN-SN and DMN-CEN and increased FC was observed in the SN-CEN in BD. The alteration direction of regional FC was consistent with that of FC at the brain network level. Decreased FC between the left posterior cingulate cortex and right anterior cingulate cortex was associated with longer WCST completion time in BD patients (but not in HCs). CONCLUSIONS: These findings emphasize the dominant role of the DMN in the psychopathology of BD and provide evidence that cognitive deficits in BD may be associated with aberrant FC between the anterior and posterior DMN.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/complicações , Transtorno Bipolar/diagnóstico por imagem , Função Executiva , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Cognição
9.
Transl Psychiatry ; 13(1): 173, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225683

RESUMO

Cognitive dysfunction is a significant, untreated clinical need in patients with psychiatric disorders, for which preclinical studies are needed to understand the underlying mechanisms and to identify potential therapeutic targets. Early-life stress (ELS) leads to long-lasting deficits of hippocampus-dependent learning and memory in adult mice, which may be associated with the hypofunction of the brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor kinase B (TrkB). In this study, we carried out eight experiments using male mice to examine the causal involvement of the BDNF-TrkB pathway in dentate gyrus (DG) and the therapeutic effects of the TrkB agonist (7,8-DHF) in ELS-induced cognitive deficits. Adopting the limited nesting and bedding material paradigm, we first demonstrated that ELS impaired spatial memory, suppressed BDNF expression and neurogenesis in the DG in adult mice. Downregulating BDNF expression (conditional BDNF knockdown) or inhibition of the TrkB receptor (using its antagonist ANA-12) in the DG mimicked the cognitive deficits of ELS. Acute upregulation of BDNF (exogenous human recombinant BDNF microinjection) levels or activation of TrkB receptor (using its agonist, 7,8-DHF) in the DG restored ELS-induced spatial memory loss. Finally, acute and subchronic systemic administration of 7,8-DHF successfully restored spatial memory loss in stressed mice. Subchronic 7,8-DHF treatment also reversed ELS-induced neurogenesis reduction. Our findings highlight BDNF-TrkB system as the molecular target of ELS-induced spatial memory deficits and provide translational evidence for the intervention at this system in the treatment of cognitive deficits in stress-related psychiatric disorders, such as major depressive disorder.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Estresse Psicológico , Animais , Humanos , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo , Cognição , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Giro Denteado , Transtornos da Memória , Receptor trkB , Tropomiosina
10.
Sheng Li Xue Bao ; 75(2): 248-254, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37089099

RESUMO

Trace amines are endogenous molecules distributed in the central nervous system and peripheral tissues that resemble common biogenic amines in terms of subcellular localization, chemical structure, and metabolism. Trace amine-associated receptor (TAAR) is a kind of evolutionarily conserved G-protein-coupled receptors in vertebrates, in which TAAR1 is a functional regulator of monoamine transmitters such as dopamine and serotonin. TAAR1 is widely considered as a potential therapeutic target for schizophrenia, depression and drug addiction. Moreover, TAAR1 is also expressed in peripheral tissues. The homeostasis imbalance of trace aminergic system can induce over-activation of peripheral immune system and central immune inflammatory response. TAAR1 modulators are becoming potential emerging drugs for the treatment of immune-related illnesses, because they may play a major role in the activation or modulation of immune response.


Assuntos
Receptores Acoplados a Proteínas G , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Aminas Biogênicas , Dopamina
11.
J Affect Disord ; 329: 225-234, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858265

RESUMO

BACKGROUND: A recent study revealed disrupted topological organization of whole-brain networks in patients with major depressive disorder (MDD); however, these results were mostly driven by recurrent MDD patients, rather than first-episode drug-naïve (FEDN) patients. Furthermore, few longitudinal studies have explored the effects of antidepressant therapy on the topological organization of whole-brain networks. METHODS: We collected clinical and neuroimaging data from 159 FEDN MDD patients and 152 normal controls (NCs). A total of 115 MDD patients completed an eight-week antidepressant treatment procedure. Topological features of brain networks were calculated using graph theory-based methods and compared between FEDN MDD patients and NCs, as well as before and after treatment. RESULTS: Decreased global efficiency, local efficiency, small-worldness, and modularity were found in pretreatment FEDN MDD patients compared with NCs. Nodal degrees, betweenness, and efficiency decreased in several networks compared with NCs. After antidepressant treatment, the global efficiency increased, while the local efficiency, the clustering coefficient of the network, the path length, and the normalized characteristic path length decreased. Moreover, the reduction rate of the normalized characteristic path length was positively correlated with the reduction rate of retardation factor scores. LIMITATIONS: The interaction effects of groups and time on the topological features were not explored because of absence of the eighth-week data of NC group. CONCLUSIONS: The topological architecture of functional brain networks is disrupted in FEDN MDD patients. After antidepressant therapy, the global efficiency shifted toward recovery, but the local efficiency deteriorated, suggesting a correlation between recovery of retardation symptoms and global efficiency.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Antidepressivos/uso terapêutico
12.
Neurosci Bull ; 39(1): 41-56, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35750984

RESUMO

Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.


Assuntos
Transtornos do Sono-Vigília , Estresse Psicológico , Animais , Camundongos , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Sono , Estresse Psicológico/complicações
13.
Transl Psychiatry ; 12(1): 236, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668086

RESUMO

The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and 465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for individual diagnosis to differentiate patients with recurrent MDD from healthy controls.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Rede de Modo Padrão , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Recompensa
14.
J Affect Disord ; 301: 248-252, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038478

RESUMO

OBJECTIVE: To investigate the prevalence of psychotic depression and the differences in sociodemographic and clinical characteristics and prescription patterns of psychotropic medications between patients with psychotic depression (PD) and patients with nonpsychotic depression (NPD) in China. METHODS: We conducted a cross-sectional study in 13 major psychiatric hospitals or the psychiatric units of general hospitals in China from September 1, 2010, to February 28, 2011. PD was defined according to the psychotic disorder section of the Mini International Neuropsychiatric Interview (MINI). The sociodemographic and clinical characteristics and the prescription patterns of psychotropic medications were compared between the PD and NPD groups. Multivariate logistic regression analysis was used to investigate factors associated with an increased likelihood of PD. RESULTS: Among 1172 MDD patients, the prevalence of psychotic features was 9.2% in the present study. The logistic regression analysis indicated that unmarried (OR = 2.08, p < 0.001), frequent depressive episodes (OR = 2.10, p = 0.020), depressive episodes with suicidal ideation and attempts (OR = 1.91, p = 0.004), and patients who were prescribed any antipsychotics (OR = 2.94, p < 0.001) were associated with psychotic features in patients with MDD. LIMITATIONS: Cross-sectional design, retrospective recall of some data CONCLUSION: The prevalence of PD is high in China, and there were some differences in demographic and clinical characteristics between patients with PD and patients with NPD. Clinicians should regularly assess psychotic symptoms and consider intensive treatment and close monitoring when treating subjects with PD.


Assuntos
Depressão , Transtornos Psicóticos , Estudos Transversais , Humanos , Prescrições , Prevalência , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/epidemiologia , Estudos Retrospectivos
15.
Bipolar Disord ; 24(4): 400-411, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34606159

RESUMO

BACKGROUND: Recently, functional homotopy (FH) architecture, defined as robust functional connectivity (FC) between homotopic regions, has been frequently reported to be altered in MDD patients (MDDs) but with divergent locations. METHODS: In this study, we obtained resting-state functional magnetic resonance imaging (R-fMRI) data from 1004 MDDs (mean age, 33.88 years; age range, 18-60 years) and 898 matched healthy controls (HCs) from an aggregated dataset from 20 centers in China. We focused on interhemispheric function integration in MDDs and its correlation with clinical characteristics using voxel-mirrored homotopic connectivity (VMHC) devised to inquire about FH patterns. RESULTS: As compared with HCs, MDDs showed decreased VMHC in visual, motor, somatosensory, limbic, angular gyrus, and cerebellum, particularly in posterior cingulate gyrus/precuneus (PCC/PCu) (false discovery rate [FDR] q < 0.002, z = -7.07). Further analysis observed that the reduction in SMG and insula was more prominent with age, of which SMG reflected such age-related change in males instead of females. Besides, the reduction in MTG was found to be a male-special abnormal pattern in MDDs. VMHC alterations were markedly related to episode type and illness severity. The higher Hamilton Depression Rating Scale score, the more apparent VMHC reduction in the primary visual cortex. First-episode MDDs revealed stronger VMHC reduction in PCu relative to recurrent MDDs. CONCLUSIONS: We confirmed a significant VMHC reduction in MDDs in broad areas, especially in PCC/PCu. This reduction was affected by gender, age, episode type, and illness severity. These findings suggest that the depressive brain tends to disconnect information exchange across hemispheres.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Psychoradiology ; 2(1): 32-42, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38665141

RESUMO

Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), reproducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the motivations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from the first round of analyses of the pooled repository have included alterations in functional connectivity within the default mode network, in whole-brain topological properties, in dynamic features, and in functional lateralization. These well-powered exploratory observations have also provided the basis for future longitudinal hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diagnosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal effects of antidepressant medications and developing individualized neuromodulation targets, while building an open repository for the scientific community.

17.
Mol Psychiatry ; 26(12): 7363-7371, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385597

RESUMO

Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.


Assuntos
Transtorno Depressivo Maior , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Tamanho da Amostra
18.
Pharmacogenet Genomics ; 31(8): 172-176, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34081644

RESUMO

OBJECTIVES: Genome-wide analyses of antidepressant response have suggested that genes initially associated with risk for schizophrenia may also serve as promising candidates for selective serotonin reuptake inhibitor (SSRI) efficacy. Protein tyrosine phosphatase, receptor-type, zeta-1 (PTPRZ1) has previously been shown to be associated with schizophrenia, but it has not been investigated as a predictor of antidepressant efficacy. The main objective of the study was to assess whether SSRI-mediated depressive and anxiety symptom remission in Chinese patients with major depressive disorder (MDD) are associated with specific PTPRZ1 variants. METHODS: Two independent cohorts were investigated, the first sample (N = 344) received an SSRI (i.e. fluoxetine, sertraline, citalopram, escitalopram, fluvoxamine, or paroxetine) for 8 weeks. The second sample (N = 160) only received escitalopram for 8 weeks. Hamilton Depression and Hamilton Anxiety Rating Scale scores at 8-weeks post-baseline in both cohorts were used to determine remission status. Five PTPRZ1 variants (rs12154537, rs6466810, rs6466808, rs6955395, and rs1918031) were genotyped in both cohorts. RESULTS: Anxiety symptom remission was robustly associated with PTPRZ1 rs12154537 (P = 0.004) and the G-G-G-G haplotype (rs12154537-rs6466810-rs6466808-rs6955395; P = 0.005) in cohort 2 but not cohort 1 (mixed SSRI use). Associations with depressive symptom remission did not survive correction for multiple testing. CONCLUSIONS: These findings suggest that PTPRZ1 variants may serve as a marker of escitalopram-mediated anxiety symptom remission in MDD.


Assuntos
Transtorno Depressivo Maior , Ansiedade/tratamento farmacológico , Ansiedade/genética , Citalopram/efeitos adversos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Escitalopram , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Resultado do Tratamento
19.
Front Psychiatry ; 12: 553305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815158

RESUMO

Bipolar disorder (BD) is a major and highly heritable mental illness with severe psychosocial impairment, but its etiology and pathogenesis remains unclear. This study aimed to identify the essential pathways and genes involved in BD using weighted gene coexpression network analysis (WGCNA), a bioinformatic method studying the relationships between genes and phenotypes. Using two available BD gene expression datasets (GSE5388, GSE5389), we constructed a gene coexpression network and identified modules related to BD. The analyses of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways were performed to explore functional enrichment of the candidate modules. A protein-protein interaction (PPI) network was further constructed to identify the potential hub genes. Ten coexpression modules were identified from the top 5,000 genes in 77 samples and three modules were significantly associated with BD, which were involved in several biological processes (e.g., the actin filament-based process) and pathways (e.g., MAPK signaling). Four genes (NOTCH1, POMC, NGF, and DRD2) were identified as candidate hub genes by PPI analysis and CytoHubba. Finally, we carried out validation analyses in a separate dataset, GSE12649, and verified NOTCH1 as a hub gene and the involvement of several biological processes such as actin filament-based process and axon development. Taken together, our findings revealed several candidate pathways and genes (NOTCH1) in the pathogenesis of BD and call for further investigation for their potential research values in BD diagnosis and treatment.

20.
Pharmacol Res ; 167: 105571, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33753244

RESUMO

Emerging evidence supports an essential role of trace amine-associated receptor 1 (TAAR1) in neuropsychiatric disorders such as depression and schizophrenia. Stressful events are critical contributors to various neuropsychiatric disorders. This study examined the role of TAAR1 in mediating the negative outcomes of stressful events. In mice that experienced chronic social defeat stress but not acute stress, a significant reduction in the TAAR1 mRNA level was found in the medial prefrontal cortex (mPFC), a brain region that is known to be vulnerable to stress experience. Conditional TAAR1 knockout in the mPFC mimicked the cognitive deficits induced by chronic stress. In addition, chronic treatment with the selective TAAR1 partial agonist RO5263397 ameliorated chronic stress-induced changes in cognitive function, dendritic arborization, and the synapse number of pyramidal neurons in the mPFC but did not affect chronic stress-induced anxiety-like behaviors. Biochemically, chronic stress reduced the ratio of vesicular transporters of glutamate-1 (VGluT1) / vesicular GABA transporter (VGAT) in the mPFC,most prominently in the prelimbic cortex, and RO5263397 restored the excitatory-inhibitory (E/I) imbalance. Together, the results of this study reveal an essential role of TAAR1 in mediating chronic stress-induced cognitive impairments and suggest that TAAR1 agonists may be uniquely useful to treat MDD-related cognitive impairments.


Assuntos
Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Receptores Acoplados a Proteínas G/metabolismo , Estresse Psicológico/complicações , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Regulação para Baixo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...